当前位置:首页 » 手表图片 » 哈希手表散列图片

哈希手表散列图片

发布时间: 2023-02-09 04:16:48

① 哈希(hash) - 哈希算法的应用

通过之前的学习,我们已经了解了哈希函数在散列表中的应用,哈希函数就是哈希算法的一个应用。那么在这里给出哈希的定义: 将任意长度的二进制值串映射为固定长度的二进制值串,这个映射规则就是哈希算法,得到的二进制值串就是哈希值
要设计一个好的哈希算法并不容易,它应该满足以下几点要求:

哈希算法的应用非常广泛,在这里就介绍七点应用:

有很多着名的哈希加密算法:MD5、SHA、DES...它们都是通过哈希进行加密的算法。
对于加密的哈希算法来说,有两点十分重要:一是很难根据哈希值反推导出原始数据;二是散列冲突的概率要很小。
当然,哈希算法不可能排除散列冲突的可能,这用数学中的 鸽巢原理 就可以很好解释。以MD5算法来说,得到的哈希值为一个 128 位的二进制数,它的数据容量最多为 2 128 bit,如果超过这个数据量,必然会出现散列冲突。
在加密解密领域没有绝对安全的算法,一般来说,只要解密的计算量极其庞大,我们就可以认为这种加密方法是较为安全的。

假设我们有100万个图片,如果我们在图片中寻找某一个图片是非常耗时的,这是我们就可以使用哈希算法的原理为图片设置唯一标识。比如,我们可以从图片的二进制码串开头取100个字节,从中间取100个字节,从结尾取100个字节,然后将它们合并,并使用哈希算法计算得到一个哈希值,将其作为图片的唯一标识。
使用这个唯一标识判断图片是否在图库中,这可以减少甚多工作量。

在传输消息的过程中,我们担心通信数据被人篡改,这时就可以使用哈希函数进行数据校验。比如BT协议中就使用哈希栓发进行数据校验。

在散列表那一篇中我们就讲过散列函数的应用,相比于其它应用,散列函数对于散列算法冲突的要求低很多(我们可以通过开放寻址法或链表法解决冲突),同时散列函数对于散列算法是否能逆向解密也并不关心。
散列函数比较在意函数的执行效率,至于其它要求,在之前的我们已经讲过,就不再赘述了。

接下来的三个应用主要是在分布式系统中的应用

复杂均衡的算法很多,如何实现一个会话粘滞的负载均衡算法呢?也就是说,我们需要在同一个客户端上,在一次会话中的所有请求都路由到同一个服务器上。

最简单的办法是我们根据客户端的 IP 地址或会话 ID 创建一个映射关系。但是这样很浪费内存,客户端上线下线,服务器扩容等都会导致映射失效,维护成本很大。

借助哈希算法,我们可以很轻松的解决这些问题:对客户端的 IP 地址或会话 ID 计算哈希值,将取得的哈希值域服务器的列表的大小进行取模运算,最后得到的值就是被路由到的服务器的编号。

假设有一个非常大的日志文件,里面记录了用户的搜索关键词,我们想要快速统计出每个关键词被搜索的次数,该怎么做呢?

分析一下,这个问题有两个难点:一是搜索日志很大,没办法放到一台机器的内存中;二是如果用一台机器处理这么大的数据,处理时间会很长。

针对这两个难点,我们可以先对数据进行分片,然后使用多台机器处理,提高处理速度。具体思路:使用 n 台机器并行处理,从日志文件中读出每个搜索关键词,通过哈希函数计算哈希值,然后用 n 取模,最终得到的值就是被分配的机器编号。
这样,相同的关键词被分配到了相同的机器上,不同机器只要记录属于自己那部分的关键词的出现次数,最终合并不同机器上的结果即可。

针对这种海量数据的处理问题,我们都可以采用多机分布式处理。借助这种分片思路,可以突破单机内存、CPU等资源的限制。

处理思路和上面出现的思路类似:对数据进行哈希运算,对机器数取模,最终将存储数据(可能是硬盘存储,或者是缓存分配)分配到不同的机器上。

你可以看一下上图,你会发现之前存储的数据在新的存储规则下全部失效,这种情况是灾难性的。面对这种情况,我们就需要使用一致性哈希算法。

哈希算法是应用非常广泛的算法,你可以回顾上面的七个应用感受一下。

其实在这里我想说的是一个思想: 用优势弥补不足
例如,在计算机中,数据的计算主要依赖 CPU ,数据的存储交换主要依赖内存。两者一起配合才能实现各种功能,而两者在性能上依然无法匹配,这种差距主要是: CPU运算性能对内存的要求远高于现在的内存能提供的性能。
也就是说,CPU运算很快,内存相对较慢,为了抹平这种差距,工程师们想了很多方法。在我看来,散列表的使用就是利用电脑的高计算性能(优势)去弥补内存速度(不足)的不足,你仔细思考散列表的执行过程,就会明白我的意思。

以上就是哈希的全部内容

② 哈希函数详解(一)

Hash(哈希),又称“散列”。

散列(hash)英文原意是“混杂”、“拼凑”、“重新表述”的意思。

在某种程度上,散列是与排序相反的一种操作,排序是将集合中的元素按照某种方式比如字典顺序排列在一起,而散列通过计算哈希值,打破元素之间原有的关系,使集合中的元素按照[散列函数]的分类进行排列。

在介绍一些集合时,我们总强调需要重写某个类的 equals() 方法和 hash Code() 方法,确保唯一性。这里的 hash Code() 表示的是对当前对象的唯一标示。计算 hash Code 的过程就称作 哈希。

我们通常使用数组或者链表来存储元素,一旦存储的内容数量特别多,需要占用很大的空间,而且在 查找某个元素 是否存在的过程中,数组和链表都需要挨个循环比较,而通过 哈希 计算,可以大大 减少比较次数 。

举个栗子:

现在有 4 个数 {2,5,9,13},需要查找 13 是否存在。

这样需要遍历 4 次才能找到,时间复杂度为 O(n)。

四个数 {2,5,9,13} 对应的哈希值为:

然后把它们存储到对应的位置。

当要查找 13 时,只要先使用哈希函数计算它的位置,然后去那个位置查看是否存在就好了,本例中只需查找一次,时间复杂度为 O(1)。

因此可以发现,哈希 其实是随机存储的一种优化,先进行分类,然后查找时按照这个对象的分类去找。

哈希通过一次计算大幅度缩小查找范围,自然比从全部数据里查找速度要快。

比如你和我一样是个剁手族买书狂,家里书一大堆,如果书存放时不分类直接摆到书架上(数组存储),找某本书时可能需要脑袋从左往右从上往下转好几圈才能发现;如果存放时按照类别分开放,技术书、小说、文学等等分开(按照某种哈希函数计算),找书时只要从它对应的分类里找,自然省事多了。

哈希的过程中需要使用哈希函数进行计算。

哈希函数是一种映射关系,根据数据的关键词 key ,通过一定的函数关系,计算出该元素存储位置的函数。

表示为:

address = H [key]

哈希的过程中需要使用哈希函数进行计算。

哈希函数是一种映射关系,根据数据的关键词 key ,通过一定的函数关系,计算出该元素存储位置的函数。

表示为:

address = H [key]

取关键字或关键字的某个线性函数值为散列地址。

即 H(key) = key 或 H(key) = a*key + b,其中a和b为常数。

取关键字被某个不大于散列表长度 m 的数 p 求余,得到的作为散列地址。

即 H(key) = key % p, p < m。

当关键字的位数大于地址的位数,对关键字的各位分布进行分析,选出分布均匀的任意几位作为散列地址。

仅适用于所有关键字都已知的情况下,根据实际应用确定要选取的部分,尽量避免发生冲突。

先计算出关键字值的平方,然后取平方值中间几位作为散列地址。

随机分布的关键字,得到的散列地址也是随机分布的。

将关键字分为位数相同的几部分,然后取这几部分的叠加和(舍去进位)作为散列地址。

用于关键字位数较多,并且关键字中每一位上数字分布大致均匀。

选择一个随机函数,把关键字的随机函数值作为它的哈希值。

通常当关键字的长度不等时用这种方法。

构造哈希函数的方法很多,实际工作中要根据不同的情况选择合适的方法,总的原则是 尽可能少的产生冲突 。

通常考虑的因素有 关键字的长度 和 分布情况 、 哈希值的范围 等。

如:当关键字是整数类型时就可以用除留余数法;如果关键字是小数类型,选择随机数法会比较好。

③ 哈希码和磁力衔接有什么区别哈希码怎么用

哈希编码相当于一个文件标志,任何一个被上传的文件,网站都会给予一个哈希编码,如果其他用户下载,可以通过哈希表来查询文件,从而下载文件。包括所有的下载软件,也是通过哈希编码的编码库来判断文件的。

哈希码产生的依据:哈希码并不是完全唯一的,它是一种算法,让同一个类的对象按照自己不同的特征尽量的有不同的哈希码,但不表示不同的对象哈希码完全不同。也有相同的情况,看程序员如何写哈希码的算法。

(3)哈希手表散列图片扩展阅读:

方法应用

equals方法在hibernate中的应用。

equals方法是默认的判断2个对象是否相等的方法,在Object类里有实现,判断的是2个对象的内存地址。在hibernate中,不允许存在同类对象中有2个一样的实例。hibernate通过equals方法做判断。如:

User u1 = new User(“张三”);

User u2 = new User(“李四”);

User u3 = new User(“张三”);

按照项目需求,用户只要名字相同,就表示同一个用户,所以认为,u1和u3是同一个人,同一个对象。但是因为u1,u2,u3三者的内存地址都各不相同,所以hibernate会认为这是3个不同的对象。这与假设的出了矛盾。 因此,将覆盖Object类中的equals方法。

public class User{

private String userName;

?.//get ,set方法省

//覆盖Object里的equals方法

public boolean equals(Object arg0){

if (!(arg0 instanceof User)){

return false;

}

User user = (User)arg0;

//如果名字相同,则表示属于同一个对象。

if(user.getName().equals(this.getName)){

return true;

}else{

return false; }

}

这样hibernate在插入数据的时候,如果传过来一个叫”张三”的用户,hibernate会先判断有没有叫“张三”的用户,如果没有,就允许插入,如果有,就不允许插入。这样做可以保证数据的高度一致性,不同的项目有不同的需求,所以要根据自己的需求来覆盖equals方法。

④ 同品牌的手表可以置换吗

可以置换的,只是置换的价格要根据手表的品牌,质量,购买日期,有无磨损等情况而定。

计算机博弈(Computer Game)也称为机器博弈,是人工智能的一个重要研究分支,在各个领域产生了大量的科技成果,而作为机器博弈一个重要组成环节的博弈树搜索算法已经在国外经过多年发展,并且产生了一大批技术成果。

许多博弈树搜索算法不是靠一次搜索完成的,如渴望搜索。当再次搜索同一个博弈树时,如果能把以前搜索的信息加以利用,无疑将提高搜索效率,保存以前搜索信息主要使用置换表。

基本原理

置换表(Translation Table,TT)的原理是采用哈希表技术将已搜索的结点的局面特征、估值和其他相关信息记录下来,如果待搜索的结点的局面特征在哈希表中已经有记录,在满足相关条件时,就可以直接利用置换表中的结果。

对一个结点进行估值时,应先查找置换表,置换表命中失败,再对该结点进行搜索。置换表在使用时要及时更新,当计算出一个结点的估值时,应立即将这个结点的相关信息保存到置换表。

为了加快处理速度,一般不采用再散列技术,一旦在写入置换表的时候发生冲突,直接覆盖相关的数据项,只要保证在读取操作时避免读取到错误数据即可,因此置换表的设计应使得发生冲突的概率很小。

⑤ HashSet和TreeSet的区别

两者主要在实现方式、数据是否有序以及是否可以放入null值等三方面存在区别。

一、实现方式

HashSet:HashSet是哈希表实现的。

TreeSet:TreeSet是二差树实现的。

二、数据是否有序

HashSet:HashSet中的数据是无序的。

TreeSet:Treeset中的数据是自动排好序的。

三、是否可以放入null值

HashSet:可以放入null,但只能放入一个null。

TreeSet:不允许放入null值。

(5)哈希手表散列图片扩展阅读

HashSet是基于HashMap实现的,HashSet底层使用HashMap来保存所有元素,因此HashSet的实现比较简单,相关HashSet的操作,基本上都是直接调用底层HashMap的相关方法来完成,应该为保存到HashSet中的对象覆盖hashCode()和equals()。

1、已知实现接口有:

Serializable, Cloneable, Iterable<E>, Collection<E>, Set<E>。

2、直接已知子类:

JobStateReasons, LinkedHashSet。

⑥ HashMap是什么东西

HashMap,中文名哈希映射,HashMap是一个用于存储Key-Value键值对的集合,每一个键值对也叫做Entry。这些个键值对(Entry)分散存储在一个数组当中,这个数组就是HashMap的主干。HashMap数组每一个元素的初始值都是Null。

HashMap是基于哈希表的 Map 接口的实现。此实现提供所有可选的映射操作,并允许使用 null 值和 null 键。(除了异步和允许使用 null 之外,HashMap 类与 Hashtable 大致相同。)此类不保证映射的顺序,特别是它不保证该顺序恒久不变。

(6)哈希手表散列图片扩展阅读:

因为HashMap的长度是有限的,当插入的Entry越来越多时,再完美的Hash函数也难免会出现index冲突的情况。

HashMap数组的每一个元素不止是一个Entry对象,也是一个链表的头节点。每一个Entry对象通过Next指针指向它的下一个Entry节点。当新来的Entry映射到冲突的数组位置时,只需要插入到对应的链表即可。

⑦ 22题这种的散列表要怎么画,H(k)=k%8是什么意思

没什么说的,参照下图😉

⑧ 哈希函数的哈希表的概念及作用

哈希表中元素是由哈希函数确定的。将数据元素的关键字K作为自变量,通过一定的函数关系(称为哈希函数),计算出的值,即为该元素的存储地址。表示为:
Addr = H(key)
为此在建立一个哈希表之前需要解决两个主要问题:
⑴构造一个合适的哈希函数
均匀性 H(key)的值均匀分布在哈希表中;
简单以提高地址计算的速度
⑵冲突的处理
冲突:在哈希表中,不同的关键字值对应到同一个存储位置的现象。即关键字K1≠K2,但H(K1)= H(K2)。均匀的哈希函数可以减少冲突,但不能避免冲突。发生冲突后,必须解决;也即必须寻找下一个可用地址。
解决冲突的方法:
⑴链接法(拉链法)。将具有同一散列地址的记录存储在一条线性链表中。例,除留余数法中,设关键字为 (18,14,01,68,27,55,79),除数为13。散列地址为 (5,1,1,3,1,3,1),哈希散列表如图。
⑵开放寻址法。如果h(k)已经被占用,按如下序列探查:(h(k)+p⑴)%TSize,(h(k)+p⑵)%TSize,…,(h(k)+p(i))%TSize,…
其中,h(k)为哈希函数,TSize为哈希表长,p(i)为探查函数。在 h(k)+p(i-1))%TSize的基础上,若发现冲突,则使用增量 p(i) 进行新的探测,直至无冲突出现为止。其中,根据探查函数p(i)的不同,开放寻址法又分为线性探查法(p(i) = i : 1,2,3,…),二次探查法(p(i)=(-1)^(i-1)*((i+1)/2)^2,探查序列依次为:1, -1,4, -4, 9 …),随机探查法(p(i): 随机数),双散列函数法(双散列函数h(key) ,hp (key)若h(key)出现冲突,则再使用hp (key)求取散列地址。探查序列为:h(k),h(k)+ hp(k),…,h(k)+ i*hp(k))。
⑶桶寻址法。桶:一片足够大的存储空间。桶寻址:为表中的每个地址关联一个桶。如果桶已经满了,可以使用开放寻址法来处理。例如,插入A5,A2,A3,B5,A9,B2,B9,C2,采用线性探查法解决冲突。如图。

⑨ 哈希图和普通的图的区别

哈希图和普通的图区别主要是功能和图片的质量变动有了很多的提升和改善,哈希图支持很多的功能比如美像,缩影等等,而且图片质量也非常高。

⑩ 哈希表(散列表)

哈希表,也叫散列表,是根据关键码值(key value)直接访问的数据结构。也就是说,它通过把关键码值映射到表中的一个位置来访问记录,以加快查找的速度。这个映射函数叫 散列函数 ,存放记录的表叫 散列表

优点:一对一的查找效率很高;

缺点:一个关键字可能对应多个散列地址;需要查找一个范围时,效果不好。

由于数组是连续的,于是可以根据下标在O(1)的读写任何元素,因此它的时间效率是很高的。我们可以根据数组时间效率高的优点,用数组来实现简单的哈希表:把数组的下标设为哈希表的键值,而把数组中每一个数字设为哈希表的值,这样每一个下标及数组中就形成了键-值的配对。有了这样的哈希表,我们就能在O(1)的时间内查找,从而快速、高效的解决很多问题。

就是把Key通过一个固定的算法函数既所谓的哈希函数转换成一个整型数字,然后就将该数字对数组长度进行取余,取余结果就当作数组的下标。将value存储在以该数字为下标的数组空间里。(或者:把任意长度的输入(又叫做预映射, pre-image),通过散列算法,变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,而不可能从散列值来唯一的确定输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数。)

数组的特点是: 寻址容易,插入和删除困难

链表的特点是: 寻址困难,插入和删除容易 ;

我们能不能综合两者的特性,做出一种寻址容易,插入删除也容易的数据结构?答案是肯定的,这就是我们要提起的哈希表,哈希表有多种不同的实现方法,我接下来解释的是最常用的一种方法——拉链法,我们可以理解为“链表的数组”。如下图所示。

左边很明显是个数组,数组的每个成员包括一个指针,指向一个链表的头,当然这个链表可能为空,也可能元素很多。我们根据元素的一些特征把元素分配到不同的链表中去,也是根据这些特征,找到正确的链表,再从链表中找出这个元素。

好的散列函数=计算简单+分布均匀(计算得到的散列地址分布均匀)

散列冲突:不同的关键字经过散列函数的计算得到了相同的散列地址。

最直观的一种,上图使用的就是这种散列法,公式:
index = value % 16
学过汇编的都知道,求模数其实是通过一个除法运算得到的,所以叫“除法散列法”。

求index是非常频繁的操作,而乘法的运算要比除法来得省时(对现在的CPU来说,估计我们感觉不出来),所以我们考虑把除法换成乘法和一个位移操作。公式:

如果数值分配比较均匀的话这种方法能得到不错的结果,但我上面画的那个图的各个元素的值算出来的index都是0——非常失败。也许你还有个问题,value如果很大,value * value不会溢出吗?答案是会的,但我们这个乘法不关心溢出,因为我们根本不是为了获取相乘结果,而是为了获取index。

平方散列法的缺点是显而易见的,所以我们能不能找出一个理想的乘数,而不是拿value本身当作乘数呢?答案是肯定的。

1,对于16位整数而言,这个乘数是40503
2,对于32位整数而言,这个乘数是2654435769
3,对于64位整数而言,这个乘数是11400714819323198485

这几个“理想乘数”是如何得出来的呢?这跟一个法则有关,叫黄金分割法则,而描述黄金分割法则的最经典表达式无疑就是着名的斐波那契数列,即如此形式的序列:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377, 610, 987, 1597, 2584, 4181, 6765, 10946,…。另外,斐波那契数列的值和太阳系八大行星的轨道半径的比例出奇吻合。

对我们常见的32位整数而言,公式:

如果用这种斐波那契散列法的话,那上面的图就变成这样了:

用斐波那契散列法调整之后会比原来的取摸散列法好很多。

1.建立一个缓冲区,把凡是拼音重复的人放到缓冲区中。当我通过名字查找人时,发现找的不对,就在缓冲区里找。

2.进行再探测。就是在其他地方查找。探测的方法也可以有很多种。

(1)在找到查找位置的index的index-1,index+1位置查找,index-2,index+2查找,依次类推。这种方法称为线性再探测。

(2)在查找位置index周围随机的查找。称为随机在探测。

(3)再哈希。就是当冲突时,采用另外一种映射方式来查找。

热点内容
前任送手表意味着什么 发布:2024-04-30 04:38:04 浏览:291
卡诗顿手表表盘怎么拿出来 发布:2024-04-30 03:31:37 浏览:2
手表男士2021新款酒桶瑞士 发布:2024-04-30 03:18:25 浏览:766
太原市小天才手表维修点电话 发布:2024-04-30 02:54:04 浏览:789
教育机构常用电子表格怎么制作 发布:2024-04-30 02:41:31 浏览:228
华为新出的手表图片 发布:2024-04-30 02:35:10 浏览:507
香奈儿抚顺 发布:2024-04-30 02:13:06 浏览:578
联语智能手表和小天才哪个好 发布:2024-04-30 02:08:03 浏览:7
woke手表维修点 发布:2024-04-30 01:51:25 浏览:990
鲁山哪里有卖儿童电话手表 发布:2024-04-30 01:31:25 浏览:584